[[Laplace transform]]
# Table of Laplace transforms
## Specific functions
| Laplace transform | Function |
| ---------------------------------- | ------------------------------------------------------------- |
| $$\frac{1}{(s-a)^n}$$ | $$e^{at} \frac{t^{n-1}}{(n-1)!}$$ |
| $$\frac{1}{s^2 + \omega^2}$$ | $$\frac{\sin(\omega t)}{\omega}$$ |
| $$\frac{s}{s^2 + \omega^2}$$ | $$\cos(\omega t)$$ |
| $$\frac{1}{(s-a)^2 + \omega^2}$$ | $$\frac{e^{at} \sin(\omega t)}{\omega}$$ |
| $$\frac{{s-a}}{(s-a)^2 + \omega}$$ | $$e^{at} \cos(\omega t)$$ |
| $$\frac{1}{(s^2 + \omega^2)^2}$$ | $$\frac{\sin(\omega t) - \omega t\cos(\omega t)}{2\omega^3}$$ |
| $$\frac{s}{(s^2+\omega^2)^2}$$ | $$\frac{t\sin(\omega t)}{2\omega}$$ |
Note $n \in \mathbb{N}_{\leq 0}$
## General rules
| Laplace transform | Function |
| ----------------------------------------------- | ---------------------------- |
| $$\frac{e^{-as}}{s}$$ | $$H(t-a)$$ |
| $$e^{-as}\cdot \mathcal{L}\{ f \}(s)$$ | $$f(t-a)\,H(t-a)$$ |
| $$\mathcal{L}\{ f \}(s-a)$$ | $$e^{at}f(t)$$ |
| $$s \mathcal{L}\{ f \}(s) - f(0)$$ | $$f'(t))$$ |
| $$s^2 \mathcal{L}\{ f \}(s) - sf(0) - f'(0)$$ | $$f''(t))$$ |
| $$(D \mathcal{L})\{ f \}(s)$$ | $$-t f(t)$$ |
| $$(D^n \mathcal{L})\{ f \}(s)$$ | $$(-t)^n f(t)$$ |
| $$\frac{\mathcal{L}\{ f \}(s)}{s}$$ | $$\int_{0}^{t} f(u) \, du $$ |
| $$\mathcal{L}\{ f \}(s) \, \mathcal{L}\{ g \}(s)$$ | $$(f * g)(t)$$ |
Note that here $H(t)$ represents the [[Heaviside function]]
and $f * g$ represents [[Convolution]].
$D$ is the [[differential operator]].
#
---
#state/tidy | #SemBr